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1 Introduction 

I will talk about a fundamental concept introduced by Grothendieck, the notion of 
topos, and its unifying role in mathematics. In the title of this paper, the expression 
“unifying notion” is due to Grothendieck himself and can be found in Récoltes et 
Semailles [8], the famous autobiographical book of the mathematician in which he 
carries out a vast reflection on his mathematical work as well as on the reception of 
this work by the mathematical community of his time. 

The theme of unification occupies an important place in this text and appears, in 
particular, in relation to the notion of topos as in the following remarkable passage: 

It is the topos theme which is this ‘bed’ or this ‘deep river’ where come to be married 
geometry and algebra, topology and arithmetic, mathematical logic and category theory, 
the world of the continuous and that of ‘discontinuous’ or ‘discrete’ structures. 

It is what I have conceived of most broad to capture with finesse, through a single language 
rich in geometric resonances, an ‘essence’ common to situations most distant from each 
other coming from one region or another of the vast universe of mathematical things. 

The most striking feature of this extract is the universal dimension that 
Grothendieck attributes to toposes, a universality that is extremely rare at such 
a level in mathematics. It is indeed very difficult to be able to construct the same 
kind of object out of the most diverse mathematical situations, in such a way as to 
extract the essence of each situation. According to Grothendieck, this is what the 
toposes allow and realise. 

As he announces, and we will come back to this, examples abound: toposes 
appear naturally in analytical, geometric, topological, algebraic, etc. frameworks, 
and, obviously, in connection with the theory of categories, toposes being them-
selves categories. This is actually one of the most profound unifications established 
by the notion: that between category theory and topology through Grothendieck’s 
primary and fundamental intuition interpreting any topological space through the 
intermediary of its category of sheaves of sets. Historically, it was this intuition that 
led Grothendieck to introduce toposes and since then it has emerged from various 
landscapes, through various constructions, to an impressive level of generality since, 
for example, we can associate toposes with mathematical theories, in the sense of 
logic. 

It is therefore natural to ask the following question: Since toposes can be 
associated in an essential way with such a variety of situations, can this unification 
take on a substantial and dynamical meaning? 

More specifically, would it be possible to use this unification to achieve transfers 
of knowledge from one context to another? 

This question has been—and still is—my main concern since my doctoral 
research until today: trying to realise this aspiration of unification through methods 
that would allow to make this unification a technical tool establishing ‘bridges’ 
between different theories and thus allowing new approaches to given mathematical 
problems.
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Before going into detail, I would like to introduce the themes we will be 
discussing. First of all, I would like to talk about the multiform nature of toposes. 
Indeed, toposes turn out to be central objects in mathematics, in the sense that 
they can be profitably considered from several different viewpoints. There are three 
classical points of view: 

– That of a topos as a metamorphosis of the concept of space, that is, 
Grothendieck’s original conception 

– The one introduced by logicians who interpret toposes as mathematical universes 
with an internal logic of their own, in which it is possible to consider models of 
mathematical theories such as first-order theories or even higher-order theories 
and to try to classify these models 

– Lastly, that of toposes seen as classifying spaces for certain types of structures, 
a theme introduced informally by Grothendieck and clarified thanks to the work 
of categorical logicians in the 1970s 

I will then briefly discuss the reception of the notion of topos by the math-
ematical community and, in particular, the reception of the unifying vision that 
Grothendieck foresees. This theme will prove interesting from both a philosophical 
and sociological point of view. In this regard, I have selected a few quotations 
from Récoltes et Semailles in which Grothendieck talks about the difficulty that 
the mathematical community has had—and in part continues to have—in hearing 
the unifying message he brought. In particular, we will ponder on which were 
the obstacles to the understanding of toposes as unification tools as opposed to 
their understanding as technical tools, for example, in relation to questions—also 
motivating for Grothendieck—related to étale cohomology. It will be seen that, 
to Grothendieck’s visionary aspect, the mathematicians of his time preferred the 
‘pragmatic’ dimension of toposes having as its sole aim that of solving difficult 
problems. 

I will then give an idea of the use that can be made of Grothendieck toposes as 
‘unifying bridges’, i.e. as objects which can be used for making transfers between 
different mathematical theories or situations, as I have conceived and developed it 
since my doctoral studies. I will give both the key principles of this approach, which 
seems to me to extend Grothendieck’s approach in a natural way, and some concrete 
examples. 

2 The Multiform Nature of Toposes 

Since their introduction by Grothendieck in the 1960s, toposes have appeared, 
with various approaches, in the categorical interpretation of various theories at 
the borders of geometry, algebra and logic. As we have already mentioned, a 
Grothendieck topos can alternatively be interpreted as a generalised topological 
space, as a mathematical universe or as a theory modulo a certain equivalence
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relation called ‘Morita equivalence’.1 Let us briefly recall each of these different 
points of view. 

2.1 Toposes as Generalised Topological Spaces 

On this subject, we must begin with a clarification. Grothendieck, rather than talking 
of generalised spaces, speaks of a ‘metamorphosis’ of the notion of topological 
space. Indeed, toposes are not technically a strict generalisation of topological 
spaces; for a true equivalence, we must restrict ourselves to a particular class of 
topological spaces, called sober spaces. Fortunately, otherwise their interest would 
have been attenuated, sober spaces form a large class of topological spaces which 
includes most of those which appear naturally in mathematics. Toposes generalise 
in a strict sense sober topological spaces.2 

In any case, it is not really the dimension of generalisation that is interesting but 
rather that of metamorphosis: the fact of being able to think of topological spaces 
in category theory. This has enormous consequences since, from a technical point 
of view, a topological space is something very different from a category. Especially 
since, in terms of structure, toposes are extremely rich categories, whereas a ‘mere’ 
topological space leaves little room for algebraic or structural manipulations. With 
toposes, we really change from one world to another and the term ‘metamorphosis’ 
chosen by Grothendieck is particularly appropriate. 

This first approach to the notion of topos was introduced by Grothendieck in the 
early 1960s in the Bois Marie seminar and appears in the first volume of SGA 4. In 
this book, we find the development of the foundations of the theory, which is based 
on several key ideas, the first of which, that of the sheaf, goes back to Leray. It is 
a question of thinking about topological spaces through their associated categories 
of sheaves. According to Grothendieck, the notion of topos appeared by going ‘all 
the way to the end’ (‘jusqu’au bout’) of Leray’s intuition. The leading idea is the 
following. 

Given a topological space X, Grothendieck associates with it its category . Sh(X)

of sheaves. This is a category whose objects are the sheaves of sets on X and whose 
morphisms are the natural transformations between its sheaves seen as functors. 
The depth of this idea is easy to illustrate: first of all, the fundamental topological 
properties of X–connectedness, compactness, etc.—can be ‘read’ from . Sh(X)3 ,

1 This is the relationship that identifies two theories precisely when they have the same classifying 
topos. 
2 X is sober if for any non-empty closed set A that cannot be written as a proper union of two 
closed sets, there exists a unique point x such that A is the smallest closed set containing x. 

The topos of sheaves on a sober topological space determines this space, to the nearest 
homeomorphism. It is in this sense that we can say that the notion of topos generalises that of 
topological space. 
3 ‘Sh’ for  sheaf. 
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so no topological information is lost when passing from a topological space to 
its category of sheaves of sets. Secondly, we gain a lot from the point of view 
of structures because the sheaf categories associated with topological spaces have 
remarkable structural properties: they have all limits and colimits, function spaces 
(also called ‘exponentials’) of an object by another and also an object classifying 
the subobjects in the category. 

From a structural and algebraic point of view, one could speak of .Sh(X) as 
an ‘ideal world’: everything exists, one can form quotients, spaces of functions, 
coproducts, etc., in other words everything one is used to doing in the classical 
context and everything that we are used to doing in the classical context of sets 
(provided, however, that we do not use non-constructive principles, but we will 
come back to this). In short, starting from a relatively ‘unstructured’ topological 
space, we end up with a ‘hyper-structured’ and even ‘maximally structured’ object, 
an illustration of the ‘metamorphosis’ of which Grothendieck speaks! 

But he was not satisfied with considering categories of this form; he also 
thought deeply about the notion of sheaf itself. He wondered whether this notion 
only made sense in the context of topological spaces or, potentially, in another, 
broader one, which went well beyond topology. Of course, the primary motivation 
for this questioning came from Weil’s conjectures, from the need to define non-
classical cohomological theories, going beyond the topological framework. Thus, 
Grothendieck, knowing the easiness of defining cohomology from the category of 
sheaves of sets of a topological space, realised that a more general notion of sheaf 
would make it possible to define new cohomological theories, with the firm hope 
of finding, among them, those that would help prove Weil’s conjectures. And this is 
precisely what happened. 

Before going further into Grothendieck’s reflections, let us take the time to 
remind ourselves of the notions of presheaf and sheaf. If X denotes a topological 
space, .O(X) the category of opens of X and .Set the category of sets, then a presheaf 
on X is a contravariant functor 

. O(X) −→ Set

or, equivalently, a covariant functor of the opposite category 

. O(X)op −→ Set .

Thus, in order to define presheaves on X, we only need the category . O(X)

whose objects are the opens of the space X and whose morphisms are the inclusions 
between open sets. This definition turns out to be particularly malleable and can 
be generalised without any difficulty to categories. If . C denotes any category, a 
presheaf on . C is a covariant functor: 

.C op −→ Set .
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The notion of sheaf of sets on a topological space X, on the other hand, is based 
on the notions of covering family and glueing. A covering of an open set U in the 
usual topological sense is a family of open subsets .(Ui)i∈I such that each . Ui is 
contained in U and that .∪i∈IUi = U . A sheaf on X is then a presheaf such that 
giving a section on an open U covered by open subsets . Ui is equivalent to giving a 
family of sections on the . Ui which match on the intersections .Ui ∩ Uj . 

The generalisation of the notion of sheaf to categories requires a categorical 
translation of the notion of covering family and of the glueing condition. It was 
formulated by Grothendieck who introduced the notion of Grothendieck topology 
on a category. If . C denotes a small category, i.e. a category whose objects and 
arrows form a set, and if c is an object of . C , a covering family of c will be nothing 
but a family of morphisms .ci → c possessing properties analogous to those of 
covering families of open sets of a topological space. More precisely, one requires 
that any object c of . C be associated with a collection .J (c) of elements called sieves 
on c, which are sets S of morphisms of . C having c as their target and closed under 
composition on the right, i.e. such that whatever f is in S and g is a morphism of . C
composable with f , .f ◦ g ∈ S. 

A Grothendieck topology on . C is then a function J assigning to any object c of 
. C a set .J (c) of sieves on c in such a way that the following properties are satisfied:

• (Maximality axiom) For any object c of . C , the maximal sieve on c consisting of 
all the arrows with target c belongs to .J (c).

• (Pullback stability Axiom) For any arrow .f : d → c in . C and any sieve S 
in . J (c), the sieve .f ∗(S) = {g : e → d | f ◦ g ∈ S} belongs to . J (d). In  
the topological context, this is indeed what happens by distributivity of arbitrary 
unions with respect to finite intersections.

• (Transitivity) For any sieve S on c and any .T ∈ J (c), if .f ∗(S) ∈ J (dom(f )), for  
any .f ∈ T , then .S ∈ J (c). 

These conditions are both simple and natural, and this explains why one easily 
encounters, just about everywhere in mathematics, categories that can be provided 
with Grothendieck topologies. Such a topology is what is needed to define sheaves 
on the relevant category: 

Definition A sheaf on a pair .(C , J ) formed by a small category . C and by a 
Grothendieck topology J on . C is a presheaf .P : C op → Set such that, for any sieve 
.S ∈ J (c) and any family .{xf ∈ P(dom(f )) | f ∈ S} satisfying . P(g)(xf ) = xf ◦g

for any .f ∈ S and any arrow g of . C composable with f , there exists a unique 
element .x ∈ P(c) such that .xf = P(f )(x) for every .f ∈ S. 

The category of sheaves thus defined will be denoted by .Sh(C , J ). 

.
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Finally: a Grothendieck topos is a category equivalent to a category of 
sheaves of the form .Sh(C , J ).4 

We note that a pair .(C , J ) as in the above definition is called a site by 
Grothendieck. This terminology, as always with him, is subtly chosen since it 
expresses the contingent character of this notion in relation to the invariant 
dimension of toposes. In a way, a site would only be a sketch, a presentation of 
a situation, whereas the topos is the object that extracts the abstract essence of the 
situation. 

And, indeed, a site is not an object in itself, it is a pair, like an artist’s partial 
sketch, which is coherently completed by the construction of the associated topos 
from the site’s data. 

We shall see later, and this is what will allow us to use toposes as ‘bridges’, 
that different sites can generate equivalent toposes (in the sense of category theory). 
In this respect, Grothendieck makes an analogy, admittedly reductive but formally 
correct, with groups5 which, as is well known, can be presented in different ways 
by generators and relations. The same applies to toposes, which have several 
presentations—in fact, an infinite number—by different sites, still with much more 
expressiveness and freedom for sites, which are found everywhere in mathematics 
and logic in extremely varied forms. 

The fact that different sites can generate equivalent toposes is very interesting 
when we realise that, since obtaining invariants by categorical equivalence is almost 
trivial (any property or notion naturally formulated in categorical language neces-
sarily being invariant), we have, in principle, an enormous quantity of invariants that 
can be defined on toposes, well beyond the classical invariants such as cohomology. 
Any invariant can thus be considered and studied in terms of different presentations 
by sites, which gives rise to a veritable mathematical morphogenesis. Indeed, when 
we study the different ways of expressing the same invariant on various toposes 
through different presentations, we uncover a truly astounding mathematical wealth. 
We shall give some examples below. 

Before considering the logicians’ approach to toposes, it is interesting to see how 
Grothendieck expresses himself about the birth of the idea of topos. In his literary 
texts, Récoltes et Semailles or La clef des songes, he attaches great importance to 
childhood in his vision of life, mathematics and creation. In the following excerpt, 
he returns to the ‘childlike’, innocent idea of topos, that innocence which is the key 
to creativity, though unequally shared by the colleagues of his time: 

Like the very idea of sheaf (due to Leray), or that of scheme, like any ‘great idea’ that 
comes to upset an inveterate vision of things, the idea of topos is disconcerting because 
of its character of naturalness, of ‘self-evidence’, by its simplicity (almost, one would say, 
verging on the naive or the simplistic, or even the ‘dumb’) – by that special quality which 
so often makes us exclaim: ‘Oh, that’s all there is to it!’, with a half-disappointed, half-

4 Intrinsic characterisations of toposes exist—as shown by Giraud, for example—but we will not 
use these results here. 
5 Although reductive, the analogy is not without foundation. Indeed, Grothendieck himself 
envisaged and studied toposes as a generalisation of groups. 
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envious tone; with, perhaps, also an undertone of ‘wacky’, of ‘not serious’, which one often 
reserves to anything that confuses by an excess of unexpected simplicity. To what reminds 
us, perhaps, of the long-buried and disowned days of our childhood. . . 

Grothendieck was aware of the elegance, simplicity and naivety of the notion he 
was introducing, but, at the same time, he recognised its disconcerting character, 
because of the unexpectedness it represented in the eyes of the mathematical 
community of his time. 

In fact, Grothendieck discusses at length the psychology behind the rather 
virulent and often irrational hostility—which persists in some circles even today— 
towards the notion of topos; we will return to this later. He notably adds: 

Nevertheless, I can’t think of anyone else on the mathematical scene, over the last three 
decades, who could have had this naivety, or this innocence, to take (in my place) this other 
crucial step of all, introducing the so childish idea of topos (or at least that of ‘site’). 

2.2 Toposes as Universes 

This approach was proposed a few years after Grothendieck’s work by W. Lawvere 
and M. Tierney. Their school studied toposes axiomatically, as categories within 
which one can ‘do mathematics’, thanks in particular to categorical semantics. They 
thus introduced the novel point of view on toposes as alternative mathematical 
universes, with their own internal logic, in which mathematics can be developed. 

In order to give an impressionistic, non-technical picture, inspired by the logical 
point of view on mathematical universes, we will say that toposes resemble, in 
certain aspects, the classical universe in which we are used to working and which 
is the universe of sets. Thus, as far as pure computations, algebra, are concerned, 
toposes behave similarly to the universe of sets: one finds in both fundamental 
formal properties such as the existence of limits and colimits. 

Nevertheless, there are essential differences which distinguish them, first of all 
their internal logic: for example, the notion of truth in a topos is not generally 
Boolean6 and one can encounter a great variety of truth values and therefore much 
richer logical phenomena. Logics can be very different from one topos to another. 
They have the fertility of intuitionistic, constructive logics, as opposed to the relative 
‘poverty’ of Boolean logic. 

Furthermore, it is possible, thanks to the rich categorical structure that each 
topos possesses, to consider models of mathematical theories, for example, first-
order ones, within any topos. This has immense consequences, such as allowing 
the development of a functorial model theory, on which we shall speak later. It is 
certain, in any case, that the potential field of study of logicians specialised in model 
theory and who, until then, only worked in the topos of sets has been considerably

6 See the presentation by Alain Connes in the volume Lectures Grothendieckiennes (Spartacus IDH 
and SMF, 2022). 
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expanded. Today, one can consider theories in any topos, study their properties in 
these new frameworks, vary the ambient toposes, link them functorially and thus 
open up new horizons. 

This great variety, this great flexibility, offers the possibility of constructing 
new mathematical worlds which allow to accommodate (in the sense of giving 
substance to) concepts which would not exist or could not perhaps be embodied 
in a constructive or natural way in the classical foundations of mathematics. I am 
thinking, for example, of infinitesimals or of problems of independence of axioms 
in set theory, or even of ‘forcing’. These questions can be tackled very satisfactorily 
in the framework of toposes, precisely by exploiting the flexibility that these offer 
to generate new landscapes. 

Once a toposic world has been constructed in which the problem we are 
interested in has a realisation, an expression, we can always envisage the possibility 
of constructing, from this topos, other toposes (or objects) that respond to this 
problem and provide a framework closer to our intuition. For all that, the existence— 
proven—of such a ‘solution’ topos is remarkable in itself, since it offers us a 
universe in which, to take up one of the cited examples, the question of the existence 
or not of infinitesimals does not arise: they exist and not only in an isolated topos. 
Perhaps we will need the existence of these infinitesimals in a context verifying 
certain properties, but then the problem becomes more relational than absolute: it 
becomes that of transferring to our particular context the properties of a topos in 
which these infinitesimals exist. We can thus see that the theory of toposes realises 
an enlargement of the mathematical ontology which is not only conceptual, but 
technically extremely powerful. 

The possibility of functoralising model theory through topos theory is, in fact, a 
striking illustration of this technical power. In set theory there is a classical notion 
of model for first-order theories, due to Tarski: sorts, i.e. names of different types of 
objects, are interpreted by sets, function symbols by functions and relation symbols 
by subsets. This yields a structure. A model is then nothing else than a structure in 
which all the axioms of the theory are satisfied. 

This notion can be generalised to any topos; the sorts will be interpreted by 
objects of the topos, the function symbols by arrows and, finally, the relation 
symbols by subobjects. As for the structural dynamics generated, it is perfectly 
similar to the classical case (see [9, 11] or [6]). Thanks to the categorical richness 
of toposes, one can then inductively define the interpretation of the formulae and, 
with it, the toposic models of any theory, not only of first order, although we confine 
ourselves here to this case. This makes it possible to ‘relativise’ mathematics, in the 
sense of developing it in relation to variable bases: we do not have a single universe 
at our disposal in which we would be obliged to view the problem, we can change 
the universe. This adds a new dimension to mathematics. 

Let us now return to a point raised earlier, which deserves some clarification. 
Faced with the immense variety of toposes, the natural questions to ask in a 
particular context are: ‘Is the topos of sets the most intuitive, the most appropriate, 
the most natural for considering this context? Is there not a topos that offers 
a privileged point of view that would shed more light on the problem under
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consideration?’ We answer this last question in the affirmative, and, indeed, the 
theory of classifying topos—the subject of the following paragraph—allows us to 
give a precise mathematical meaning to this intuition: there is always a privileged 
point of view that we can have on a certain theory.7 Thus, with the help of functorial 
model theory, we can classify models. Now, in studying the relationship between 
validity in models and demonstrability in the theory, if we restrict ourselves to set-
based models, we come up against the following problem: Gödel’s completeness 
theorem affirms that if a first-order theory is finitary and if we decide to accept the 
axiom of choice, then the validity of a closed first-order formula in all the set-based 
models is equivalent to demonstrability in the theory. But, indeed, in order to prove 
this, we need to force, i.e. to use a non-constructive principle, namely, the axiom of 
choice. This gives an indication of the ‘deficiencies’ of set-based models, in which 
syntax and semantics do not merge. 

If, on the other hand, we decide to widen the field of study to the context of 
toposes, we find a particular topos, with a particular model, the universal model of 
the theory, in which a unification between syntax and semantics is realised. Indeed, 
what is valid in this model can be demonstrated in the theory and, of course, vice 
versa (and all of this in an entirely constructive way). So, rather than considering all 
the set-based models of the theory in an attempt to obtain a faithful representation 
of it, one can concentrate on this perfectly constructive universal model. 

This is an illustration of the fact that broadening the mathematical framework 
brings great rewards. Once the right point of view has been identified, that of the 
universal model living in the classifying topos of the theory, one can allow oneself 
to revisit all the set-based models as points of the classifying topos and thus as 
‘deformations’ of this universal model. 

2.3 Toposes as Classifying Spaces 

The intuition for this last point of view is, once again, due to Grothendieck, although 
he did not push it all the way through, as we shall see, particularly in its technical 
realisation. According to this perspective, toposes are regarded as objects that 
embody the mathematical or semantic content of first-order theories of a particular 
form: those that can be formulated within ‘geometric logic”. Every such theory 
has an associated topos, called its classifying topos, which, as the name suggests, 
classifies its models in any topos. The equivalence relation that identifies two 
theories when they have the same classifying topos is called Morita equivalence. 
Any topos is the classifying topos of a theory (and, in fact, of an infinite number 
of theories). We can then think of a Grothendieck topos as an equivalence class of 
geometric theories modulo this Morita equivalence relation.

7 At least for first-order (‘geometric’) theories 
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What Is the Idea Behind the Notion of Classifying Topos? Grothendieck has 
always attached great importance to the representability paradigm and has given it 
a central role in his work in algebraic geometry. In this sense, he builds on the idea 
of Yoneda and his famous categorical lemma: to think of an object, in a category, 
through the morphisms of arbitrary objects in the category towards that object. The 
philosophy of the Yoneda lemma thus leads us to think of an object as the collection 
of its generalised elements. In line with this paradigm, Grothendieck was interested 
in toposes from the point of view of the structures that they classify, and, to this end, 
he had to consider a category of toposes. The objects of this category are, of course, 
toposes. As for morphisms, Grothendieck defines them as follows: a (geometric) 
morphism of toposes is a pair .f := (f ∗, f∗) of adjoint functors, more precisely a 
direct image functor . f∗ (right adjoint) and an inverse image functor . f ∗ (left adjoint), 
with the condition that the inverse image functor preserves finite projective limits.8 

In the spirit of classifying spaces, the idea is then to understand, in this category, a 
given topos . E by considering the geometric morphisms of any topos . F into . E , with 
the aim of also determining the topos . E up to equivalence. This idea of classification 
makes it possible to develop a new point of view on toposes, which we will explain 
in more detail below. But first, let us return to Grothendieck. In various places in his 
work we find considerations about toposes as classifying spaces. However, the most 
explicit text on this subject is the thesis of his student M. Hakim ‘Topos annelés et 
schémas relatifs’ in which this view of toposes as classifying spaces is implemented 
in particular cases. Four toposes are studied in this volume as classifying toposes of 
certain types of rings; for example, it is shown that the Zariski topos classifies local 
rings, the étale topos classifies strictly Henselian rings, etc. 

We then find more general considerations by Grothendieck on this subject, 
particularly in SGA 4—in particular, sentences where he refers to the classifying 
topos of structures ‘expressed in terms of finite projective limits and inductive limits 
of any kind’. Of course, this is a rather vague expression—he realises this—and the 
problem of formalising this intuition arises. 

If the intuition is entirely correct, it was only materialised with the help of the 
language of logic, which, most probably, he did not know. Indeed, according to a 
classical paradigm of logic, formulae are constructed inductively from simple for-
mulae, which must be compared to Grothendieck’s explicit references to operations 
that are repeated (finite projective limits and arbitrary inductive limits). He writes in 
SGA 4 (we highlight in bold some parts): 

The exactness properties of the inverse image functor . u∗ of a geometric morphism of 
toposes .u : E → E ′ ensure that for any kind of algebraic structure9 L whose data can 
be described in terms of data of arrows between basic sets and sets deduced from these by

8 Note that, since the inverse image is a left adjoint functor, it automatically preserves arbitrary 
inductive limits, whereas in general it does not preserve any projective, or even finite, limits. This 
is therefore a condition that one imposes. 
9 Here, Grothendieck has in mind algebraic structures of which he gives a few examples at the end 
of the extract, and not algebraic algebraic structures in the sense of the universal algebra of logic. 
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repeated applications of finite projective limit operations and any inductive limits, and for 
any ‘object of . E ′ with a structure of species L’, its image by . u∗ is endowed with the same 
structure. Rather than entering into the uninvolving task of giving a precise meaning to 
this statement and justifying it formally, we advise the reader to make it explicit and to 
convince themselves of its validity for species of structures such as group, ring, module 
over a ring, comodule over a big ring, etc. comodule over a ring, bigebra over a ring, torsor 
under a group. 

In terms of mathematical content, this means that for two toposes . E and . F and 
a geometric morphism .u : F → E , the inverse image functor . u∗ transforms any 
L-structure of . E into an L-structure of . F . 

This is an absolutely fundamental remark which, once formalised, makes it 
possible to define a ‘(pseudo)functor of the models of a theory’, to use the logical 
terminology. More precisely, we find the functoriality of models mentioned in 
the previous paragraph. In particular, this means that instead of having a single 
context in which to consider the models, we can vary our topos and, in doing so, 
define a (pseudo)functor. The question of classifying topos then becomes that of the 
representability of this (pseudo)functor. If it is representable, we say that the object 
representing it is the classifying topos for that theory. 

Moreover, a representable functor gives not only an object of the category under 
study but also an element of the value of this functor in this object: in the framework 
we are interested in, this is what we will call the universal model of the theory. 

Reading this extract, it is clear that for Grothendieck the intuition was very clear, 
but he still felt the need for a better formalisation, and it is precisely this ‘not 
very engaging’ (but very interesting) task of formalising ‘geometric logic’ that the 
categorical logicians in the 1970s, in particular W. Lawvere, M. Makkai, G. Reyes, 
A. Joyal, J. Bénabou and J. Cole, accomplished.10 

More precisely, in the language of logic, any (first-order) geometric theory . T can 
be canonically associated with a topos . ET, called its classifying topos—in the sense 
that it represents its (pseudo)functor of models—and which embodies its ‘semantic 
core’. 

The topos .ET is characterised by the following universal property: for any 
Grothendieck topos . E we have an equivalence of categories 

. Geom(E ,ET) 	 T-mod(E )

natural in . E , where .Geom(E ,ET) denotes the category of geometric morphisms 
.E → ET and .T-mod(E ) is the category of models of . T in . E . 

So a topos that verifies this universal property is uniquely determined up to 
categorical equivalence. We can therefore speak of the classifying topos of a 
geometric theory. 

In the figure below, the coloured geometric shapes represent toposes in which 
models U , M , N and P of the theory live; in particular, the yellow diamond

10 See, for example, [11]. 
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represents the classifying topos of the theory and U the universal model inside it. 
This model is the image of the identity of . ET under the equivalence 

. Geom(E ,ET) 	 T-mod(E ) .

The models M , N , P , etc. are thus all images of U by inverse image functors 
. f ∗, . g∗, . h∗, etc. of geometric morphisms f , g, h, etc. from the toposes where the 
models live to the classifying topos . ET. They therefore appear as ‘deformations’ of 
the universal model of the theory. 

The figure highlights the fact that the classifying topos of a theory is the 
privileged place where the symmetries of the theory unfold, its ‘centre of symmetry’. 
It constitutes the space where the fundamental invariants of the theory (those which 
depend solely on its semantic content, independently of its different syntactic 
presentations) are naturally defined. We can also see the advantage of having 
extended our context for considering models of the theory from the usual set-
theoretic framework to that of toposes. Indeed, such a classification result for models 
does not exist in the restricted context of sets. 

We shall not enter into the technical details of the definition of geometric logic; 
let us just say that a geometric theory is a theory written in a first-order language 
whose axioms are all of the form 

. (φ 
�x ψ),

where . φ and . ψ are geometric formulae, i.e. obtained from atomic formulae using 
only finitary conjunctions, infinitary disjunctions (indexed by an arbitrary set) and 
existential quantifications. The expression .(φ 
�x ψ) means that for all values of 
the variables in . �x, .φ(�x) implies .ψ(�x). Note that any inverse image functor . f ∗ of a 
geometric morphism sends models of a geometric theory . T into models of . T, since 
the interpretation of atomic formulae and finitary conjunctions is expressed in terms
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of finite limits, whereas infinitary disjunctions and existential quantifications are 
interpreted in terms of arbitrary colimits and finite limits. 

The apparently very particular and restrictive form of the axioms of a geometric 
theory should not mislead as to the level of generality of this logical system. In fact, 
thanks to a process called Morleyisation, we can canonically associate with any 
first-order finitary theory a finitary geometric theory with essentially the same set-
based models. Moreover, the infinitary nature of geometric logic makes it possible 
to formally express and study many natural properties that do not admit of finitary 
axiomatisations (think, for instance, of the property of an element of a ring to be 
nilpotent, which can be expressed in an infinitary but not finitary way in the language 
of ring theory, or the notion of a strong unit for a lattice-ordered group, etc.). 

As one can easily imagine, geometric theories arise in all areas of mathematics. 
The existence theorem for classifying toposes is therefore an extraordinarily general 
result, since it states that all (pseudo)functors of the form .E � T-mod(E ), where 
. T is any geometric theory, are representable. Usually in mathematics, showing 
that certain functors which are rich in information are representable is exceptional 
and has far-reaching consequences. Think, for example, of scheme theory, where 
representability theorems are relatively rare and important. Here, on the other 
hand, the existence of a classifying topos that represents the functor of models 
of a geometric theory is known in advance, so that refining and deepening this 
knowledge consists in studying this classifying topos and its properties. We are 
no longer dealing with a problem of existence, but with the study of an object 
whose existence has been established. On the other hand, the notion of (geometric) 
morphism of toposes is particularly flexible, which means that there are ‘enough 
morphisms’ to represent rich functors such as those of the models of a geometric 
theory; note that, on the other hand, the notion of morphism of schemes is more 
rigid. 

3 The Reception of Toposes 

Grothendieck complains repeatedly in Récoltes et Semailles about the bad reception 
of toposes in the mathematical community, which he attributes mainly to the lack of 
vision of his former colleagues and students. He writes, for instance: 

I gradually came to realise, though I’m not sure how, that several notions that were part 
of the forgotten vision had not only fallen into disuse, but had become, in a certain beau 
monde, the object of condescending disdain. Such was the case, in particular, of the crucial 
unifying notion of topos, at the very heart of the new geometry — the very notion that 
provides the common geometric intuition for topology, algebraic geometry and arithmetic 
— the very notion that enabled me to develop both the étale and the .�-adic cohomological 
tool, and the key ideas (more or less forgotten since, it is true) of crystalline cohomology. 
To tell the truth, it was my very name, over the years, which insidiously, mysteriously, had 
become an object of derision — as a synonym for muddy bombast ad infinitum (such as 
that on the famous ‘toposes’, indeed, or these ‘motives’ that he was raving about and that 
nobody had ever seen. . . ), splitting hairs over a thousand pages, and gigantic chatter about
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what, in any case, everybody had already known all along and without having waited for 
it.. . . 

Such an irrational reaction to a profound and fruitful concept like that of 
topos might seem implausible. And yet Grothendieck’s analysis is sadly lucid. 
I can also say this in the light of my own personal experience as a researcher 
working on toposes with the aim of exploiting their unifying power (30 years after 
these statements!)—for years I have been the victim of exactly the same kind of 
denigrations as those denounced by Grothendieck, to the point that I was obliged 
to undertake a public initiative of clarification to show the ill-foundedness of such 
accusations and restore my scientific reputation:11 as it happens, the term which 
was used to discredit some of my work as something that, ‘in any case, everyone had 
already known all along and without having waited for it’ was the highly ambiguous 
and dangerous term of folklore.12 

Here are some more excerpts from Récoltes et Semailles about the thwarted 
reception of toposes: 

For fifteen years (since I left the mathematical scene), the fertile unifying idea and the 
powerful discovery tool that is the notion of topos, has been maintained by a certain vogue in 
the banner of reputedly serious notions. Even today, very few topologists have the slightest 
suspicion of this considerable potential expansion of their science, and of the new resources 
it offers. 

This extract is particularly interesting because it shows Grothendieck’s con-
ception of toposes as objects not only of mathematical nature but also of meta-
mathematical one, as notions capable of guiding the mathematical exploration and 
leading to the introduction of new concepts and results. 

In the following passage, Grothendieck highlights the abstract nature of the 
concept of topos as an explanation for the reluctance of mathematicians to take 
it seriously: 

Given the disdain with which some of my former students treated this crucial unifying 
notion, the latter has seen itself condemned to a marginal existence since I left. [. . . ] toposes 
are nevertheless encountered at every step in geometry — but we can of course do without 
seeing them, just as we have done for millennia without seeing groups of symmetries, sets, 
or the number zero. 

This extract appears all the more remarkable when one considers that, from a 
logical point of view, the passage from a site to the corresponding topos can be 
described as a completion through the addition of ‘imaginary’ objects (in the sense 
of model theory), similar to what happens when we complete a numerical system, 
such as the set . N of positive integers into the group . Z of relative numbers, or the

11 The interested reader can find more information on this controversy at https://www. 
oliviacaramello.com/Unification/InitiativeOfClarificationResults.html. 
12 Readers wishing to delve deeper into the sociological and ethical dimension of this type 
of accusation are referred to the article ‘Epistemic injustice in mathematics’ by C.J. Rittberg, 
F. Stanley Tanswell and J-P. Van Bendegem (Synthese, Springer, 2018), which analyses in 
particular my personal case. 



292 O. Caramello

ring . Z into the field . Q of rational numbers, or the field . R of the real numbers 
into the complex plane . C. In each of these cases one adds entities whose nature 
may seem more abstract than that of the initial ones, but the interest of such 
constructions lies mainly in the new computational possibilities that they open up, 
resulting from the existence of more structures and symmetries in the extended 
context than in the original one (think, e.g. of symmetry with respect to zero in 
the relative numbers or of the fundamental theorem of algebra, for which there 
is no analogue in the restricted context of real numbers, or the fact that . N is 
merely a monoid, whereas . Z is a ring and . Q is a field). Grothendieck ironises 
that we can of course do without seeing these imaginary objects and pretend that 
they do not exist, with the result of unknowingly depriving ourselves of all the 
conceptual and technical resources that they offer. Indeed, if we look at the school of 
algebraic geometry founded by Grothendieck in the decades following the Master’s 
departure, we see that there has been a very sophisticated use and development of the 
cohomological techniques forged by Grothendieck without this being accompanied 
by a systematic development of the underlying theory of toposes. In fact, most of the 
geometers ‘heirs’ of Grothendieck have privileged sites, as objects that concretely 
express the geometric content of a situation, and the cohomological invariants of the 
associated categories of sheaves while ‘neglecting’ toposes, which are nevertheless 
the generalised spaces on which these invariants are naturally defined. We will come 
back to this point later. 

3.1 The Vision and the Tool 

The following excerpts highlight this dichotomy between the reception of the 
cohomological tools forged by Grothendieck and the recusation of the vision that 
inspired their development: 

The set of two consecutive seminars SGA 4 and SGA 5 (which for me are like a single  
‘seminar’) develop from nothing, both the powerful instrument of synthesis and discovery 
represented by the language of toposes, and the perfectly perfected and perfectly effective 
tool that is étale cohomology — better understood in its essential formal properties, from 
that moment on, than was even the cohomological theory of ordinary spaces. 

These two seminars are for me indissolubly linked. They represent, in their unity, both the 
vision, and the  tool — toposes, and a complete formalism of étale cohomology. While 
the vision is still rejected today, the tool has, for more than twenty years, profoundly 
renewed algebraic geometry in its aspect which, for me, is the most fascinating of all — 
the ‘arithmetic’ aspect, apprehended by an intuition, and by a conceptual and technical 
baggage, of ‘geometrical’ nature. 

The operation ‘Cohomologie étale’ consisted in discrediting the unifying vision of toposes 
(such as ‘nonsensefg, bombinage, etc.). . . and on the other hand, to appropriate the tool, 
i.e. the authorship of the ideas, techniques and results that I had developed on the theme of 
étale cohomology.
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3.2 ‘Sites Without Toposes’, ‘Toposes Without Sites’ 

As mentioned above, most algebraic geometers after Grothendieck have essentially 
abandoned the notion of topos by focusing on the study of particular cohomological 
theories associated with specific geometric sites, probably out of a concern for 
pragmatism. This practice of neglecting toposes in favour of sites—which can be 
summed up by the formula ‘sites without toposes’—has been largely shared within 
this community. As a consequence, even in the particular context of cohomological 
invariants, the new computational possibilities resulting from the existence of 
different presentations for the relevant toposes, pertaining in principle to different 
areas of mathematics (see the next section for more information on the technique of 
toposes as ‘bridges’), have not been exploited as much as they could have been. 

On the other hand, categorical logicians, after defining geometric logic in the 
1970s, essentially abandoned the study of classifying toposes, to focus on other 
themes such as that of ‘elementary toposes’ of W. Lawvere and M. Tierney. This 
is a type of category that differs from the that of Grothendieck toposes notably 
by being finitely axiomatisable in the language of categories. However, elementary 
toposes do not have all colimits and they are not always representable by sites (by 
definition, a topos which admits a site of definition is a Grothendieck topos). 

Such has been, in this school, the determination to abandon sites in favour of an 
exclusively axiomatic approach to toposes based on finitary logic, and the conviction 
that this theory should have replaced Grothendieck’s theory of toposes, that, in the 
literature it has produced, the very term topos, due to Grothendieck and used until 
then to designate the concept of a category equivalent to a category of sheaves (of 
sets) on a site, has started13 to designate a different and more general concept, that of 
cartesian closed category with finite limits and a subobject classifier (what we now 
call ‘elementary topos’ to distinguish it from Grothendieck’s notion of topos). Note 
that in an arbitrary ‘elementary topos’ one cannot properly do neither geometry nor 
topology, since this type of category does not necessarily have arbitrary colimits. 
Nor is there any duality between this class of categories and a class of first-order 
theories, as in the case of classifying toposes. In fact, elementary toposes classify 
the models of higher-order intuitionistic type theories, albeit in a rather rigid manner 
as the functors used in this classification are those that preserve the entire ‘logical’ 
structure of these categories (exponentials and the subobject classifier); indeed, 
these functors, unlike geometric morphisms of toposes (which are induced by any 
morphism or comorphism of sites, and in particular by any continuous application 
of topological spaces and any group homomorphism), do not arise naturally in the 
mathematical practice. 

The choice to study toposes without reference to their presentations (an approach 
that could be summarised by the formula ‘toposes without sites’) has deprived this 
school of the possibility of obtaining deep applications of toposes in ‘concrete’

13 In an inappropriate manner, both from a historical and mathematical viewpoint, in my opinion, 
as well as that of a number of colleagues. 
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mathematical contexts. Indeed, without sites, or more generally without presen-
tations for toposes, we do not have the possibility of embodying in a topos a 
mathematical content stemming from a specific problem or situation (in a certain 
field of mathematics) that we would like to study, and therefore of applying topos-
theoretic techniques to it. It is a bit like flying in an plane that is too high up to be 
able to see the ground and say anything interesting about it. 

The refusal of the essential ambiguity resulting from the fact that a topos is 
associated with an infinity of different presentations has been justified by some 
members of this school as a refusal to work with toposes through their presentations 
rather than intrinsically (or axiomatically). This concern is entirely reasonable; 
however, the point here is not to study toposes through sites, but to study sites (or 
geometric theories or other objects apt to present toposes) through toposes! 

The choices made by this school are, in fact, based on a bias against both 
infinitary and higher-order constructions. Now, Grothendieck’s concept of topos is 
both infinitary (since, on the one hand, toposes are presented by generally infinite 
sets of generators, which is why they do not admit a finitary axiomatisation in the 
language of categories, and, on the other hand, since they are naturally tailored for 
infinitary operations such as arbitrary colimits) and of higher order (due to the fact 
that the concept of site is second order). 

One can find many illustrations of this bias in the mathematical works of 
this school. For example, [9] proves several ‘site characterisations’ for invariant 
properties of toposes that have the form ‘a topos satisfies the invariant if and only if 
there exists a site of definition for this topos with such or such property’ (as if the 
site itself were unimportant), whereas, as we shall see in the next section, what one 
needs for constructing ‘bridges’ are characterisations of the form ‘a topos . Sh(C , J )

satisfies the invariant if and only if the site .(C , J ) satisfies such or such property’, 
as one needs to move both from sites to toposes and vice versa (in other words, to 
‘ascend’ from one site to the topos via one of the arches of the bridge and ‘descend’ 
on the other side through the other arch). 

The rejection of higher-order constructions in this school also manifested in their 
attempts to develop a theory of relative toposes by using the (very rigid) concept of 
a category internal to a topos, whereas the correct concept (both from a geometric 
point of view and from the point of view of higher categories) is that of stack over 
a topos, as Grothendieck and Giraud had already understood: it suffices to think 
that the canonical stack of a topos, which is the central concept around which all 
the relative theory should be developed, is not an internal category!14 They also 
neglected the notion of fibred site introduced in [1] (see Lecture VI therein), which, 
when suitably generalised, gives rise to a much broader and flexible theory than the 
formalisms based on their notion of internal site.

14 It is true that any stack is equivalent (but not necessarily isomorphic) to a split stack, and hence 
to an internal category, but this process of rigidification is based on choices (to define one of the 
functors yielding the equivalence) and is not convenient in practice. 
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Surprisingly, some of the promoters of this school have even referred 
to Grothendieck to justify their bias, interpreting the following passages by 
Grothendieck (found respectively in the preface to the second edition of SGA 4 and 
in the introduction to Lecture IV of that work) as a recognition of the inessential 
character of sites (in the book [10], which presents these developments, there is 
even a section entitled “The topos is more important than the site”!): 

Our guiding principle has been to develop a language and notations that are already those 
which effectively serve for the different applications, so as not to lose touch with the 
‘geometric’ (or ‘topological’) content of the various functors that one has to consider 
between sites. For this, the notions of topos and morphism of toposes seem to be the 
indispensable leading thread, and it is appropriate to give them a central place, the notion 
of site becoming an auxiliary technical notion. 

On the other hand, experience has taught that various situations in Mathematics should be 
considered mainly as a technical means of constructing the corresponding categories of 
sheaves (of sets), i.e. the corresponding ‘toposes’. It appears that all the really important 
notions  related  to  a  site  [. . . ]  are  in  fact  expressible  directly  in  terms  of  the  associated  
topos.. . . 

It is true that Grothendieck never spoke of ‘bridges’ or dualities between the 
level of sites and that of toposes. However, in his school it was not even conceivable 
to study toposes independently of their presentations (i.e. of the objects from which 
they were constructed), given that the geometry of the situations under consideration 
was always embodied by sites associated with schemes. 

In this respect, the introduction of the book Topos Theory by P. Johnstone, 
whose main focus and inspiration is the theory of elementary toposes, is particularly 
enlightening: in it, Johnstone notably talks about the “fundamental uselessness” of 
the existence theorem for classifying toposes (!), complains that “the full import of 
the maxim “the topos is more important than the site” seems never to have been 
appreciated by the Grothendieck school” and concludes that, unlike Grothendieck, 
he does not “view topos theory as a machine for the demolition of unsolved 
problems in algebraic geometry or anywhere else”. 

At the same time, Grothendieck blames geometers both for having abandoned 
toposes and for having made them a badly considered subject in the mathematical 
community: 

For nearly fifteen years now, it has been part of the good taste in the ‘grand world’, to look 
down on anyone who dares to pronounce the word ‘topos’, unless it is in jest or they have 
the excuse of being a logician. (These are people known for being like no others and to 
whom you have to forgive certain fads. . . ).  

In this regard, I still remember the recommendation I received a few years ago, 
when I was still a post-doc, from a well-known algebraic geometer, a former student 
of Grothendieck, to remove the word ‘topos’ from all my papers and replace it 
with the expression, which he felt was more acceptable in his community, ‘category 
of sheaves on a site’! Needless to say, I did not follow that advice; it would have 
been absurd given the central role played in my work by the invariant nature of the 
concept of topos (in relation to different presentation sites).
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Remarkably, what has been missing in both schools is an integration between the 
‘concrete’ level of sites and the ‘abstract’ or ‘metamathematical’ level of toposes, 
an integration which, as we shall see in more detail in the next section, is the 
essential condition for the fruitful use of toposes as unifying spaces in mathematics. 
This entails working at two levels, which must neither be confused nor separated 
from each other. Indeed, these two levels play fundamentally different roles: that of 
toposes is the level of unity, where the invariants live, whereas that of sites (or more 
generally of presentations of toposes) is the level of diversity, where the variability 
of forms in which a given invariant manifests itself unfolds. 

4 Toposes as ‘Bridges’: the Underlying Vision and Some 
Examples 

Since my doctoral studies, I have been working to develop a theory and a number of 
techniques for using toposes as unifying ‘bridges’ between different mathematical 
theories or contexts. Remember that Grothendieck uses the word ‘unification’ to 
mean that the same type of object—a topos—can be associated with a priori  very 
different mathematical situations. 

Grothendieck does not speak of ‘bridges’ or ‘transfers’ of knowledge between 
different theories that would be made possible by toposes. However, this new 
perspective of toposes as ‘bridges’ seems to us to constitute a natural prolongation 
of Grothendieck’s metamathematical conception of toposes. 

The theory of topos-theoretic ‘bridges’, introduced in the programmatic text 
[2], makes it possible to exploit the technical flexibility inherent to the notion of 
topos—more precisely, the possibility of representing toposes in a multitude of 
different ways—to construct ‘bridges’ unifying different mathematical theories with 
equivalent or closely related semantic contents. 

In recent years, as well as leading to the resolution of long-standing problems in 
categorical logic, these general techniques have given rise to a number of non-trivial 
applications in different areas of mathematics, and the potential of this theory has 
only just begun to be exploited. 

In fact, these ‘bridges’ are useful not only for connecting different mathematical 
theories with each other, but also for studying a given theory within a specific 
domain. 

To illustrate the potential field of application of this theory, we provide a non-
exhaustive list of mathematical fields in which it has produced substantial results: 

– Model theory (interpretation and topos-theoretic generalisation of Fraïssé’s 
theorem) 

– Proof theory (new deductive systems for geometric theories) 
– Algebra (topos-theoretic generalisation of the Galois formalism) 
– Topology (reinterpretation and generation of Stone-type and Priestley-type dual-

ities)
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– Functional analysis (results about Gelfand spectra and Wallman compactifica-
tions) 

– Lattice-ordered groups and MV-algebras (papers with A. C. Russo) 
– Cyclic structures introduced by A. Connes and C. Consani (work on ‘cyclic 

theories’ with N. Wentzlaff) 
– Algebraic geometry (generalisation of Nori motives, with L. Bar-bieri-Viale 

and L. Lafforgue, and logical approach to .�-independence problems for .�-adic 
cohomology) 

For a conceptual presentation of these and other results, the reader is referred to 
[7]. The general principles of the theory of toposes as ‘bridges’ are also presented 
in Chapter 2 of [6]. 

4.1 The Key Principles 

The theory of toposes as ‘bridges’ is based on a meta-mathematical view of toposes, 
the key principles of which can be summarised as follows: 

– The notion of Morita equivalence is ubiquitous in mathematics; in fact, in many 
situations it formalises the feeling of ‘looking at the same thing in different ways’ 
or ‘constructing the same mathematical object by different methods’. 

– In fact, several important dualities and equivalences in mathematics can be 
interpreted naturally in terms of Morita equivalences (see, e.g. my work on Stone-
type dualities and on MV-algebras). 

– On the other hand, topos theory itself is a primary source of Morita equivalences. 
Different representations of the same topos can be interpreted as Morita equiva-
lences between different theories. 

– Two bi-interpretable theories (i.e. whose coherent or geometric syntactic cate-
gories are equivalent) are Morita-equivalent, but, very remarkably, the converse is 
not true (see, e.g. our work on MV-algebras). In fact, most of Morita equivalences 
do not boil down to bi-interpretations or even to interpretations of one theory 
into the other; one must enrich these syntactic categories with imaginaries in the 
sense of model theory (which amounts to constructing their classifying toposes 
or pretoposes), in order to arrive at an equivalence of categories. This means 
that most of the correspondences (that can be established) in mathematics are 
invisible from a concrete point of view, as they are not induced by ‘dictionaries’. 

– Moreover, the notion of Morita equivalence captures the intrinsic dynamism 
inherent to the notion of mathematical theory; indeed, a mathematical theory 
gives rise by itself to an infinite number of Morita equivalences, thanks to 
the different points of view that one can have on it. For instance, each way 
of representing a theory as a quotient (i.e. a geometric extension in the same 
language) of a geometric theory . T gives rise to a representation of its classifying
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topos in terms of that of . T (see the duality theorem between quotients and 
subtoposes in Chapter 2 of [6]). 

– The existence of different theories having the same classifying topos translates, 
at the technical level, into the existence of different presentations (in particular, 
different sites of definition) of that topos. 

– Topos-theoretic invariants can thus be used for transferring information from one 
theory to the other: 

. 

– Transfers of information are obtained by expressing a given invariant in terms 
of different representations for the topos. Every invariant behaves in this context 
like a ‘pair of special glasses’ which allows one to reveal information which 
is hidden in the given Morita equivalence. Different invariants allow to transfer 
different pieces of information. 

– Thus, different properties (resp. constructions) considered in the context of 
theories classified by the same topos appear as different manifestations of a 
unique property (resp. construction) defined at the topos level. 

– The level of generality of topos-theoretic invariants is ideal for capturing several 
important aspects of mathematical theories. Indeed, invariants of the classifying 
topos . ET of a geometric theory . T translate into interesting logical (syntactic or 
semantic) properties of . T. 

– The fact that topos-theoretic invariants of topos often specialise into important 
properties or constructions of natural mathematical interest is a clear indication of 
the centrality of these concepts in mathematics. In fact, everything that happens 
at the level of toposes has ‘uniform’ ramifications throughout mathematics. For 
example, the following figure represents the lattice structure on the collection of 
subtoposes of a topos . E which induces lattice structures on the collections of 
‘quotients’ of geometric theories . T, . S, . R classified by . E :
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One of the reasons for the effectiveness of the topos-theoretic ‘bridge’ technique 
is that the relationship between a topos and its different presentations is very natural, 
which allows invariants to be (often easily but not trivially) transferred between 
different presentations (and hence between different theories). In fact, the degree of 
complexity of these ‘translations’ varies enormously from one invariant to another: 
there are large classes of invariants for which characterisations, in terms of sites 
or other topos presentations, can be established in an essentially automatic way, 
whereas for other invariants, notably the cohomological ones, the computations can 
be very difficult even in special cases. At the same time, this method is liable to 
produce profound and surprising results, since a given invariant can manifest itself 
in very different ways in the context of different presentations. In fact, this is a 
kind of mathematical morphogenesis, resulting from the expression of invariants in 
terms of different presentations of toposes. By considering different invariants in 
the context of the same equivalence of toposes, the ‘bridge’ method enables one to 
generate a wealth of results around a given theme (embodied by that equivalence). 
This way of doing mathematics is therefore characterised by a very high degree of 
continuity and modularity. Indeed, on the one hand, the generality of the method 
makes it possible to adapt or transport concepts, techniques and results from one 
context to another, while, on the other hand, the study of topos-theoretic invariants 
allows us to identify, in concrete mathematical contexts, the ‘good notions’, i.e. the 
concepts that correspond to topos-theoretic invariants (via their characterisations 
in terms of sites or other presentations of toposes) and therefore admit an infinite 
number of equivalent reformulations in other mathematical contexts. 

A topos-theoretic ‘bridge’ is a structure which involves two levels, the ‘concrete’ 
one of sites or, more generally, of objects liable of presenting toposes and the ‘ab-
stract’ one of toposes themselves; the characterisations of topos-theoretic invariants 
in terms of topos presentations form the ‘arches’ of ‘bridges’. Schematically, a 
typical ‘bridge’ has the following form:

• Decks of ‘bridges’: Morita equivalences (or, more generally, morphisms of 
toposes or other kinds of relations between them)

• Arches of ‘bridges’: Characterisations in terms of sites (or, more generally, 
expressions of topos-theoretic invariants in terms of different topos presentations) 

The different expressions of a given invariant in the context of different presen-
tations of the same topos thus find themselves logically linked by the ‘bridge’. In 
this way, one manages to relate different concrete properties by means of topos 
invariants. Note that toposes (and their invariants) no longer appear in the final 
formulation of such a logical relation, despite having played a crucial role in its 
discovery. This serves as an illustration of the need to make a ‘leap’ into the 
‘imaginary’ (setting in which symmetries naturally manifest themselves, or where 
the invariants ‘live’ ) in order to be able to link together ‘real’ entities, as well as to 
gain a more global understanding of the phenomenon we wish to study and to enjoy 
greater computational possibilities. 

For example, in the following ‘bridge’, we have an invariant property I and 
logical equivalences ‘.Sh(C , J ) satisfies I if and only if the site .(C , J ) satisfies
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the property .P(C ,J )’ and ‘.Sh(D,K) satisfy I if and only if the site .(D,K) satisfies 
the property .Q(D ,K)’, which constitute the arches of the ‘bridge’ and which allow 
us to establish the equivalence between .P(C ,J ) and .Q(D ,K). Note that these two 
properties are unified by this bridge as they are interpreted as manifestations of a 
unique property I defined at the topos level: 

4.2 Some Examples of ‘Bridges’ 

To illustrate the applicability of the technique of toposes as ‘bridges’, let us briefly 
discuss a few examples:

• Theories of presheaf type
• Topos-theoretic Fraïssé theorem
• Topological Galois theory
• Stone-type dualities 

In fact, the results obtained in each of these subjects are completely different, but  
the underlying methodology is always the same! 

Theories of Presheaf Type 

Recall that a geometric theory is said to be of presheaf type if it is classified by a 
presheaf topos. 

Theories of presheaf type are very important because they constitute the ‘building 
blocks’ from which any geometric theory can be constructed. In fact, just as any 
Grothendieck topos can be written as a subtopos of some presheaf topos, any 
geometric theory can be written as a ‘quotient’ of some theory of presheaf type. 

All finitary algebraic (or, more generally, cartesian) theories are of presheaf type, 
but this class of theories contains many other interesting mathematical theories (see, 
e.g. Chapter 9 of [6]). 

Every theory of presheaf type . T possesses two different natural representations 
of its classifying topos, which can be used to construct ‘bridges’ linking its syntax 
and its semantics:
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. 

Here, .f.p .T-mod(Set) denotes the category of finitely presentable models of . T and 
.(CT, JT) is the geometric syntactic site of . T. 

Let us consider, for instance, in the context of a theory of presheaf type . T, which 
we assume for the sake of simplicity to have only one sort, the topos-theoretic 
invariant given by the notion of subobject of the product .U × · · · × U (n times) 
of the universal model U of . T. This invariant expresses itself, in terms of the 
representation .Sh(CT, JT) of the classifying topos of . T, as the notion of geometric 
formula in n variables, considered up to .T-provable equivalence, and, in terms of 
the representation .[f.p .T-mod(Set), Set], as the notion of functorial property of n-
uplets of elements of finitely presentable models M of . T: 

. 

This ‘bridge’ thus leads to the following definability theorem: 

Theorem Let . T be a theory of presheaf type. Let us suppose that we are given, for 
each finitely presentable set-based model .M of . T, a subset .RM of .M n in such a 
way that every homomorphism .h : M → N of finitely presentable .T-models sends 
.RM into .RN . Then there exists a geometric formula .φ(x1, . . . , xn) which, for any 
finitely presentable .T-model . M , defines the subset .RM . 

Of course, the consideration of other invariants allows one to obtain many other 
interesting results about theories of presheaf type (for this, the reader is referred to 
[6]). 

Topos-Theoretic Fraïssé Theorem 

Let us now show that Fraïssé’s theorem in model theory admits a substantial 
generalisation arising from a triple ‘bridge’. 

Let us first note that, in the context of presheaf type theories, we can introduce 
a notion of homogeneous model which generalises that of weakly homogeneous 
model in classical model theory: 

Definition A set-based model M of a theory of a geometric theory . T is said to 
be homogeneous if for any arrow .f : c → d in .f.p .T-mod(Set) and any arrow 
.y : c → M in .T-mod(Set), there exists an arrow .u : d → M in .T-mod(Set) such
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that .u ◦ f = y: 

. 

We can also define, in the context of categories, the properties of amalgamation 
(AP) and joint embedding (JEP): we will say that a category satisfies AP if any pair 
of arrows with common domain can be completed into a commutative square, and 
that it satisfies JEP if any two objects admit an arrow to a third object. 

Now, the invariants defined by the properties of a topos to be bivalent and to 
be atomic, and the invariant notion of point of a topos each give rise to a different 
‘bridge’ whose deck is the same Morita equivalence: 

. 

. 

. 

Point of

Putting these three ‘bridges’ together, we obtain the following theorem (from 
[3]), which constitutes a broad generalisation of Fraïssé’s classical theorem (which 
is the particular case where . T is the quotient of the theory over a finite language 
corresponding to a uniformly finite collection of finitely presentable models of this 
theory which satisfies the hereditary property): 

Theorem Let . T be a theory of presheaf type such that the category . f.p .T-mod(Set)
is non-empty and satisfies AP. Then the theory . T′ of homogeneous .T-models is 
atomic, and it is complete if and only if .f.p .T-mod(Set) satisfies JEP. 

The level of generality of this topos-theoretic interpretation of Fraïssé’s theorem 
is high enough to allow for a unification of Fraïssé’s theory with Galois theory, as 
we explain in the next section. 

It is interesting to note that the consideration of these three invariants in the 
context of equivalence
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. Sh(f.p .T-mod(Set)op, Jat) 	 Sh(CT′ , JT′)

has allowed us to recover and improve Fraïssé’s theorem; still, there is an infinite 
number of topos-theoretic invariants which we can consider in in relation to this 
same equivalence! In this way, one can generate other results, related to Fraïssé’s 
theorem but in general independent of it as well as independent of each other 
(examples of such results are given in [3]). This is an illustration of how the ‘bridge’ 
method naturally generates families of results around a given theme. 

Topological Galois Theory 

Before presenting our topos-theoretic interpretation of Galois theory, we need to 
introduce the following categorical notions: 

Definition Let . T be a theory of presheaf type. A set-based model M of . T is said 
to be .f.p .T-mod(Set)-universal if every finitely presentable model of . T admits a 
homomorphism towards M , and it is said to be .f.p .T-mod(Set)-ultrahomogeneous 
if all the arrows from a finitely presentable model of . T towards M can be 
transformed one into another by composition with an automorphism of M . 

The following representation theorem (from [4]) provides the deck of ‘bridges’ 
which we will use to generate concrete Galois theories: 

Theorem Let . T be a theory of presheaf type such that .f.p .T-mod(Set) satisfies 
AP and JEP, and let M be a .f.p .T-mod(Set)-universal and .f.p .T-mod(Set)-
ultrahomogeneous model of . T. Then we have an equivalence of toposes 

. Sh(f.p .T-mod(Set)op, Jat) 	 Cont(Aut(M)),

where the automorphism group .Aut(M) of M is endowed with the topology of 
pointwise convergence. This equivalence is induced by the functor 

. F : f.p .T-mod(Set)op → Cont(Aut(M))

which sends any model c of .f.p .T-mod(Set) to the set . HomT-mod(Set)(c,M)

(endowed with the obvious action of .Aut(M)) and every arrow .f : c → d in 
.f.p .T-mod(Set) to the .Aut(M)-equivariant map 

. − ◦f : HomT-mod(Set)(d,M) → HomT-mod(Set)(c,M) .

Note that the functor F takes its values in the full subcategory . Contt (Aut(M))

of .Contt (Aut(M)) on the transitive and non-empty actions (which is the category of 
atoms of the topos .Contt (Aut(M))), but it is not necessarily an equivalence towards 
this category, nor is it necessarily full and faithful. 

The following result gives necessary and sufficient conditions for F to be full 
and faithful (resp. an equivalence towards .Contt (Aut(M))).
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Theorem Under the assumptions of the last theorem, the functor F is fully faithful 
if and only if every arrow of .f.p .T-mod(Set) is a strict monomorphism, and it is an 
equivalence onto the subcategory .Contt (Aut(M)) of .Cont(Aut(M)) if and only if 
moreover .f.p .T-mod(Set) is atomically complete. 

This result springs from two ‘bridges’, which are obtained by considering the 
invariant notions of atom and of arrow between atoms: 

. 

Indeed, a category . C whose opposite satisfies AP is said to be atomically 
complete if all the atoms of the topos .Sh(C op, Jat) are isomorphic to an object 
of the form .l(c) for an object c of . C (where l is the canonical functor . C op →
Sh(C op, Jat)). This condition admits an elementary characterisation in the language 
of categories. 

This theorem generalises Grothendieck’s theory of Galois categories and can 
be applied to obtain Galois-type theories in different domains of mathematics, for 
example, that of finite groups and that of finite graphs. 

The reader will perhaps have noticed that the toposes involved in Fraïssé’s theory 
are precisely the atomic and bivalent ones, which are also the toposes involved in 
our interpretation of Galois theory. In fact, Galois theory consists in studying these 
topos from the point of view of group theory, by representing them as categories of 
continuous actions of topological groups on discrete sets, whereas Fraïssé’s theory 
consists in studying them from a syntactic point of view. For more details on these 
results and the unification between Fraissé’s theory and Galois theory, we refer the 
reader to [4]. 

Stone-Type Dualities 

In [5] we show that all the Stone-type dualities or equivalences between particular 
kinds of preorders, locales or topological spaces can be obtained by functorialising 
‘bridges’ of the form 

. 

where . D is a .JC -dense subcategory of a category . C defined by a preorder. These 
equivalences are notably provided by Grothendieck’s Comparison Lemma. For  
instance, we can take for . D a Boolean algebra and for . C the lattice of open sets
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of its Stone space to obtain Stone duality, or for . C a complete atomic Boolean 
algebra and for . D the collection of its atoms to obtain Lindenbaum-Tarski duality. 

This method makes it possible to generate many new dualities for other kinds 
of preordered structures (e.g. a localic duality for meet-semilattices, a duality for 
k-frames, a duality for disjunctively distributive lattices, a duality for preframes 
generated by their directly irreducible elements, etc.). It also generalises naturally 
to arbitrary categories. 

This work notably illustrates the approach to dualities via the theory of ‘bridges’: 
to relate two objects, rather than trying to find categories into which they can 
be inserted and then seek to construct adjunctions or equivalences between them 
(e.g. by using Hom functors to a ‘dualising’ object, as in the classical categorical 
approach), one concentrates on the two objects and tries to embody their common 
invariants in a single topos associated with each of them. We thus obtain a ‘bridge’ 
for each pair of objects, and the consideration of different morphisms between the 
associated toposes provides different ways of ‘functorialising’ these ‘bridges’ and 
thus obtaining equivalences between categories containing these two objects. Note, 
however, that the identification of these categories is not given a priori (as in the 
classical categorical approach); it results from the ‘bridges’ induced by invariant 
notions of topos morphisms. 

On the other hand, the classical approach of the category theorists is based 
on a principle of continuity which, although intuitively plausible, runs the risk of 
drowning out the specificity of the objects in question in the abstraction of the 
categories in which one decides to consider them, whereas associating each object 
with a topos embodying its ‘essence’ (to use the Grothendieckian terminology) is 
liable to valorise the diversity of the individual objects in a much more profound 
way. It’s a bit like demanding that, in order for two individuals be able to marry, the 
families or social groups to which they belong should ‘marry’ as well; some people 
might find this desirable, but there is little doubt that this is an overly restrictive 
condition! 

Another interesting aspect of this approach is that it produces a veritable machine 
for generating dualities which, on the one hand, makes it possible to recover the 
various classical dualities and, on the other hand, to establish many new ones. 
Remarkably, thanks to this unifying point of view, we can figure out why certain 
dualities had been discovered while others had remained hidden, even though 
they have the same level of mathematical ‘depth’, being generated by the same 
‘machine’: often, the reason for this lies in the linguistic complexity of their 
description, which can vary significantly from one duality to another, so that the 
human intuition may suffice to discover the simplest ones (but not the others) in the 
absence of a general theory. Several illustrations of this remark are given in [5].
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5 Future Perspectives 

The results obtained so far show that toposes can play an effective role as unifying 
spaces for transferring information between different mathematical theories and 
generating new equivalences, dualities and correspondences across various areas 
of mathematics. 

In fact, toposes have a real creative power in mathematics, in the sense that their 
study naturally generates, in the most diverse mathematical contexts, a large number 
of relevant but often unsuspected ‘concrete’ notions and results. 

In the coming years, we intend to pursue both theoretical and applied research 
to further develop the potential of toposes as fundamental tools in the study of 
mathematical theories and their relations, and as ‘key’ concepts defining a new way 
of doing mathematics that can shed unique light on a wide range of different topics. 

Central themes in our research programme will be: 

– Studying important dualities or correspondences in mathematics from a topos-
theoretic point of view (in particular, the theory of motives, class field theory and 
the Langlands programme) 

– Systematically investigating expressions of topos-theoretic invariants in terms 
of different presentations of toposes and defining new invariants that capture 
important aspects of concrete mathematical problems 

– Interpreting and generalising important parts of model theory (both classical and 
modern) in terms of toposes and developing a functorial model theory 

– Introducing new methodologies for generating Morita equivalences 
– Developing general techniques for building spectra by using classifying toposes 
– Generalising the ‘bridge’ technique to the context of higher categories and 

toposes by developing a higher-order geometric logic 
– Developing a theory of classifying topos over arbitrary base toposes and relativi-

sation techniques for concepts and results 

With the development of this programme, the topos-theoretic study of mathemat-
ical theories should become increasingly ‘user-friendly’ and hence easily applicable 
not only to mathematics but also to the investigation of fundamental problems in 
other sciences, especially theoretical physics and computer science. It would be 
interesting, for instance, to study whether relativity theory and quantum mechanics 
could be unified through the identification of common toposes associated with one 
theory and the other (which would thus be constructed from sites of analytical 
nature in the first case and objects arising from the theory of operator algebras 
or non-commutative geometry, such as .C∗-algebras or quantales/quantaloides, in 
the second case). Another natural subject of study for a possible topos-theoretic 
interpretation would be that of important dualities in physics such as the AdS/CFT 
correspondence and mirror symmetry. 
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